`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Update sequence stability in graph dynamical systems
Pages: 1533 - 1541, Volume 4, Issue 6, December 2011

doi:10.3934/dcdss.2011.4.1533      Abstract        References        Full text (329.5K)           Related Articles

Matthew Macauley - Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, United States (email)
Henning S. Mortveit - Department of Mathematics, NDSSL, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, United States (email)

1 C. L. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz, R. Stearns and P. Tosic, Gardens of Eden and fixed point in sequential dynamical systems, DM-CCG 2001, 95-110.       
2 C. L. Barrett, H. S. Mortveit and C. M. Reidys, Elements of a theory of simulation III: Equivalence of SDS, Appl. Math. Comput., 122 (2001), 325-340.       
3 C. L. Barrett, H. S. Mortveit and C. M. Reidys, Elements of a theory of simulation IV: Fixed points, invertibility and equivalence, Appl. Math. Comput., 134 (2003), 153-172.       
4 C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz and R. E. Stearns, Predecessor and permutation existence problems for sequential dynamical systems, DMTCS 2003, 69-80.
5 A. Björner and F. Brenti, "Combinatorics of Coxeter Groups,'' Springer-Verlag, New York, 2005.
6 B. Bollobàs, "Random Graphs,'' Cambridge University Press, 2001.
7 R. Laubenbacher E. Sontag, A. Veliz-Cuba and A. Salam Jarrah, The effect of negative feedback loops on the dynamics of Boolean networks, Biophys. J., 95 (2008), 518-526.
8 D. L. Vertigan F. Jaeger and D. J. A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1990), 35-53.
9 A. Å. Hansson, H. S. Mortveit and C. M. Reidys, On asynchronous cellular automata, Adv. Complex Systems, 8 (2005), no. 4, 521-538.       
10 U. Karaoz, T. M. Murali, S. Letovsky, Y. Zheng, C. Ding, C. R. Cantor and S. Kasif, Whole-genome annotation by using evidence integration in functional-linkage networks, Proc. Nat. Acad. Sci., 101 (2004), 2888-2893.
11 W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London A, 115 (1927), 700-721.
12 V. S. A. Kumar, M. Macauley and H. S. Mortveit, Limit set reachability in asynchronous graph dynamical systems, RP 2009, 217-232.
13 M. Macauley, J. McCammond and H. S. Mortveit, Dynamics groups of asynchronous cellular automata, J. Algebraic Combinat, 33 (2011), 11-35.
14 M. Macauley, J. McCammond and H. S. Mortveit, Order independence in asynchronous cellular automata, J. Cell. Autom., 3 (2008), 37-56.       
15 M. Macauley and H. S. Mortveit, On enumeration of conjugacy classes of Coxeter elements, Proc. Amer. Math. Soc., 136 (2008), 4157-4165.       
16 M. Macauley and H. S. Mortveit, Cycle equivalence of graph dynamical systems, Nonlinearity, 22 (2009), 421-436.       
17 H. S. Mortveit and C. M. Reidys, "An Introduction to Sequential Dynamical Systems," Universitext, Springer Verlag, 2007.
18 C. M. Reidys, Sequential dynamical systems over words, Ann. Comb., 10 (2006), 481-498.       
19 C. M. Reidys, Combinatorics of sequential dynamical systems, Discrete Math., 308 (2007), 514-528.       
20 I. Shmulevich, E. R. Dougherty and W. Zhang, From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proc. IEEE, 90 (2002), 1778-1792.
21 S. Wolfram, "Theory and Applications of Cellular Automata," Adv. Ser. Complex Systems, 1, World Scientific Publishing Company, 1986.       

Go to top