`a`
Inverse Problems and Imaging (IPI)
 

Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations
Pages: 1 - 17, Volume 5, Issue 1, February 2011

doi:10.3934/ipi.2011.5.1      Abstract        References        Full text (438.9K)           Related Articles

Adriano De Cezaro - Institute of Mathematics Statistics and Physics, Federal University of Rio Grande, Av. Italia km 8, 96201-900 Rio Grande, Brazil (email)
Johann Baumeister - Fachbereich Mathematik, Johann Wolfgang Goethe Universität, Robert–Mayer–Str. 6–10, 60054 Frankfurt am Main, Germany (email)
Antonio Leitão - Department of Mathematics, Federal University of St. Catarina, P.O. Box 476, 88040-900 Florianópolis, Brazil (email)

1 A. B. Bakushinsky and M. Y. Kokurin, "Iterative Methods for Approximate Solution of Inverse Problems," Mathematics and Its Applications, vol. 577, Springer, Dordrecht, 2004.       
2 H. T. Banks and K. Kunisch, "Estimation Techniques for Distributed Parameter Systems," Birkhäuser, 1989.       
3 J. Baumeister, B. Kaltenbacher and A. Leitão, On Levenberg-Marquardt Kaczmarz methods for regularizing systems of nonlinear ill-posed equations, Inverse Problems and Imaging, 4 (2010), 335-350.
4 B. Blaschke(-Kaltenbacher), "Some Newton Type Methods ror the Solution of Nonlinear Ill-Posed Problems," Ph.D. thesis, Johannes Kepler University, Linz, 2005.
5 M. Brill and E. Schock, Iterative solution of ill-posed problems: A survey, in "Model Optimization in Exploration Geophysics" (ed. A. Vogel), 13-38, Vieweg, Braunschweig, 1987.       
6 C. Byrne, Block-iterative algorithms, Int. Trans. in Operational Research, 16 (2009), 01-37.       
7 J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Analysis, 50 (2002), 163-171.       
8 F. Colonius and K. Kunisch, Stability of parameter estimation in two point boundary value problems, J. Reine Angew. Math., 370 (1986), 1-29.       
9 A. De Cezaro, M. Haltmeier, A. Leitão and O. Scherzer, On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations, Appl. Math. Comput., 202 (2008), 596-607.       
10 H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Kluwer Academic Publishers, Dordrecht, 1996.       
11 C. W. Groetsch and O. Scherzer, Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators, Math. Methods Appl. Sci., 23 (2000), 1287-1300.       
12 M. Haltmeier, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis, Inverse Probl. Imaging, 1 (2007), 289-298.       
13 M. Haltmeier, A. Leitão and E. Resmerita, On regularization methods of EM-Kaczmarz type, Inverse Problems, 25 (2009), 075008.       
14 M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems, Numer. Funct. Anal. Optim., 18 (1997), 971-993.       
15 M. Hanke and C. W. Groetsch, Nonstationary iterated Tikhonov regularization, J. Optim. Theory Appl., 98 (1998), 37-53.       
16 M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.       
17 V. Isakov, "Inverse Problems for Partial Differential Equations," Second ed., Applied Mathematical Sciences, vol. 127, Springer, New York, 2006.       
18 S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control, 57 (1993), 1269-1271.       
19 B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems, 13 (1997), 729-753.       
20 B. Kaltenbacher, A. Neubauer and O. Scherzer, "Iterative Regularization Methods for Nonlinear Ill-Posed Problems," Radon Series on Computational and Applied Mathematics, vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.       
21 S. Kindermann and A. Neubauer, On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization, Inverse Probl. Imaging, 2 (2008), 291-299.       
22 R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems, Ill posed and inverse problems (book series), 23 (2002), 69-90.       
23 L. J. Lardy, A series representation for the generalized inverse of a closed linear operator, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche, e Naturali, Serie VIII, 58 (1975), 152-157.       
24 S. McCormick, The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space, Indiana Univ. Math. J., 26 (1977), 1137-1150.       
25 V. A. Morozov, "Regularization Methods for Ill-Posed Problems," CRC Press, Boca Raton, 1993.       
26 F. Natterer, Algorithms in tomography, in "The State of the Art in Numerical Analysis," vol. 63, Oxford University Press, New York, 1997.       
27 O. Scherzer, Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems, Numer. Math., 66 (1993), 259-279.       
28 O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numer. Funct. Anal. Optim., 17 (1996), 197-214.       
29 A. N. Tikhonov and V. Y. Arsenin, "Solutions of Ill-Posed Problems," John Wiley & Sons, Washington, D.C., 1977, Translation editor: Fritz John.       

Go to top