`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow
Pages: 1065 - 1076, Volume 15, Issue 4, June 2011

doi:10.3934/dcdsb.2011.15.1065      Abstract        References        Full text (410.2K)           Related Articles

Hassib Selmi - Laboratoire d'Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, B.P. 743 - 2078 La Marsa, Tunisia (email)
Lassaad Elasmi - Laboratoire d'Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, B.P. 743 - 2078 La Marsa, Tunisia (email)
Giovanni Ghigliotti - Laboratoire Interdisciplinaire de Physique, 140, rue de la Physique, 38402 Saint Martin d'Hères, France (email)
Chaouqi Misbah - Laboratoire Interdisciplinaire de Physique, 140, rue de la Physique, 38402 Saint Martin d'Hères, France (email)

1 D. Barthès-Biesel and J. M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., 113 (1981), 251-267.
2 C. D. Eggleton and A. S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, 10 (1998), 1834-1845.
3 G. Ghigliotti, T. Biben and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, J. Fluid Mech., 653 (2010), 489-518.
4 L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp. Phys., 73 (1987), 325-348.       
5 L. Greengard and V. Rokhlin, "On the Effficient Implementation of the Fast Multipole Algorithm," Technical report, Yale University, Department of Computer Science, 1988.
6 N. A. Gumerov and R. Duraiswami, Fast multipole method for the biharmonic equation in three dimensions, J. Comp. Phys., 215 (2006), 363-383.       
7 W. Helfrich, Elastic properties of lipid bilayers:l theory and possible experiments, Z. Naturforschung, 28 (1973), 693-703.
8 B. Kaoui, G. Biros and C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys. Rev. Lett., 103 (2009), 188101.
9 B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah and W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow, Phys. Rev. E, 77 (2008), 021903.
10 S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120 (1982), 27-47.
11 M. Kraus, W. Wintz, U. Seifert and R. Lipowsky, Fluid vesicles in shear flow, Phys. Rev. Lett., 77 (1996), 3685-3688.
12 J. L. McWhirter, H. Noguchi and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, PNAS, 106 (2009), 6039-6043.
13 N. Nishimura, Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55 (2002), 299-324.
14 C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow," Cambridge University Press, Cambridge, UK, 1992.       
15 C. Pozrikidis, Interfacial dynamics for stokes flow, J. Comp. Phys., 169 (2001), 250-301.
16 C. Pozrikidis, "Modeling and Simulation of Capsules and Biological Cells," CRC Press, 2003.       
17 E. Sackmann, Physical basis of self-organization and functions of membranes: Physics of vesicles, chapter 5, pages 213-302. Elsevier Science B.V., 1995.

Go to top