`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Dynamic phase transition for binary systems in cylindrical geometry
Pages: 173 - 188, Volume 16, Issue 1, July 2011

doi:10.3934/dcdsb.2011.16.173      Abstract        References        Full text (354.7K)           Related Articles

I-Liang Chern - Department of Mathematics and Taidar Institute of Mathematical Science, National Taiwan University, Taipei, 10617, Taiwan (email)
Chun-Hsiung Hsia - Department of Mathematics and Taidar Institute of Mthematical Science, National Taiwan University, Taipei, 10617, Taiwan (email)

1 Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics," Oxford University Press, 2008.
2 C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D, 109 (1997), 242-256.       
3 J. E. Hilliard, Spinodal decomposition, in Phase Transformations, American Society for Metal, Cleveland, (1970), 497-560.
4 T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,       
5 T. Ma and S. Wang, Dynamic phase transition theory in PVT systems, Indiana Univ. Math. J., 57 (2008), 2861-2889.       
6 T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784.       
7 T. Ma and S. Wang, Phase separation of binary systems, Phys. Rev. A., 388 (2009), 4811-4817.
8 J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265-315.       
9 L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.) A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998.

Go to top