`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system
Pages: 345 - 360, Volume 16, Issue 1, July 2011

doi:10.3934/dcdsb.2011.16.345      Abstract        References        Full text (394.6K)           Related Articles

Yeping Li - Department of Mathematics, Shanghai Normal University, Shanghai 200234, China (email)

1 P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 258 (2001), 52-62.       
2 A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asymptot. Anal., 25 (2001), 39-91.       
3 U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Meth. Appl. Sci., 11 (1991), 347-376.       
4 H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris, 321 (1995), 953-959.       
5 S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.       
6 P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Letters, 3 (1990), 25-29.       
7 P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Ann. Math. Pura Appl.(4), 165 (1993), 87-98.       
8 I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17 (1992), 553-577.       
9 T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas, Appl. Math. Letters, 12 (1999), 75-79.       
10 D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1998.       
11 L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations, J. Differential Equations, 165 (2000), 315-354.       
12 A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted, Z. Angew. Math. Phys., 51 (2000), 385-396.       
13 A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations," Progress in Nonlinear Differential Equations, Birkhäuser, 2001.       
14 C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dyn. Syst., 5 (1999), 449-455.       
15 Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Math. Comput. Modeling, 49 (2009), 163-177.       
16 Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Math. Sci., B28 (2008), 479-488.       
17 Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 325 (2007), 949-967.       
18 O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations," Academic Press, New York, 1968.       
19 Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Nonlinear Anal. Real World Appl., 8 (2007), 1235-1251.       
20 P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew Math. Phys., 42 (1991), 387-407.       
21 P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.       
22 P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Wien, New York, 1990.       
23 Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow, Asymp. Anal., 36 (2003), 75-92.       
24 Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.       
25 Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows, Nonlinearity, 17 (2004), 835-849.       
26 Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations, Math. Models Meth. Appl. Sci., 15 (2005), 717-736.       
27 Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations, J. Math. Anal. Appl., 344 (2008), 440-448.       
28 M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 2003.       
29 M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209.       
30 I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101-1118.       
31 S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456.       
32 L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors, Comm. Partial Differential Equations, 21 (1996), 1007-1034.       
33 F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490.       

Go to top