`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Counterexamples in non-positive curvature
Pages: 1095 - 1106, Volume 30, Issue 4, August 2011

doi:10.3934/dcds.2011.30.1095      Abstract        References        Full text (219.1K)           Related Articles

Yves Coudène - Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29238 Brest cedex, France (email)
Barbara Schapira - LAMFA, Université Picardie Jules Verne, 33 rue St Leu 80000 Amiens, France (email)

1 D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature, Proc. Steklov Inst. Math., 90 (1967).       
2 W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II, Ann. of Math., 122 (1985), 205-235.       
3 P. Billingsley, Convergence of probability measures, "Wiley Series in Probability and Statistics: Probability and Statistics," 2nd edition, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.       
4 Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces, "Geometry, III," Encyclopaedia Math. Sci., 48, Springer, Berlin, (1992), 1-85, 251-256.       
5 Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces, Israel J. Math., 179 (2010), 157-172.       
6 P. Eberlein, Geodesic flows on negatively curved manifolds I, Ann. Math. II Ser., 95 (1972), 492-510.       
7 P. Eberlein, "Geometry of Nonpositively Curved Manifolds," Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996, vii+449.       
8 J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques, dans Oeuvres (1898), 2, 729-775, Paris: Editions du Centre National de la Recherche Scientifique, (1968), 2296.
9 G. Knieper, Hyperbolic dynamics and Riemannian geometry, Handbook of Dynamical Systems, 1A (2002), 453-545.       
10 G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un, L'enseignement Mathématique, 52 (2006), 3-36.       
11 C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, "Studies in Advanced Mathematics," 2nd edition, CRC Press, Boca Raton, FL, 1999.       
12 K. Sigmund, On the space of invariant measures for hyperbolic flows, Amer. J. Math., 94 (1972), 31-37.       

Go to top