Dynamical behavior of a ratio dependent predatorprey system with distributed delay
Pages: 719  738,
Issue 3,
October
2011
doi:10.3934/dcdsb.2011.16.719 Abstract
References
Full text (405.9K)
Related Articles
Canan Çelik  Department of Mathematics and Computer Sciences, Bahçeşehir University, Istanbul, 34353, Turkey (email)
1 
C. Çelik, The stability and Hopf bifurcation for a predatorprey system with time delay, Chaos, Solitons & Fractals, 37 (2008), 8799. 

2 
C. Çelik, Hopf bifurcation of a ratiodependent predatorprey system with time delay, Chaos, Solitons & Fractals, 42 (2009), 14741484. 

3 
X. Chen, Periodicity in a nonlinear disrete predatorprey system with state dependent delays, Nonlinear Anal. RWA, 8 (2007), 435446. 

4 
C. Çelik and O. Duman, Allee effect in a discretetime predatorprey system, Chaos, Solitons & Fractals, 40 (2009), 19561962. 

5 
M. S. Fowler and G. D. Ruxton, Population dynamic consequences of Allee effects, J. Theor. Biol., 215 (2002), 3946. 

6 
K. Gopalsamy, Time lags and global stability in two species competition, Bull Math Biol, 42 (1980), 728737. 

7 
D. Hadjiavgousti and S. Ichtiaroglou, Allee effect in a predatorprey system, Chaos, Solitons & Fractals, 36 (2008), 334342. 

8 
N. D. Hassard and Y. H. Kazarinoff, "Theory and Applications of Hopf Bifurcation,'' Cambridge University Press, Cambridge, 1981. 

9 
X. He, Stability and delays in a predatorprey system, J. Math. Anal. Appl., 198 (1996), 355370. 

10 
H.F. Huo and W.T. Li, Existence and global stability of periodic solutions of a discrete predatorprey system with delays, Appl. Math. Comput., 153 (2004), 337351. 

11 
S. R.J. Jang, Allee effects in a discretetime hostparasitoid model, J. Diff. Equ. Appl. ,12 (2006), 165181. 

12 
G. Jiang and Q. Lu, Impulsive state feedback of a predatorprey model, J. Comput. Appl. Math., 200 (2007), 193207. 

13 
S. Krise and SR. Choudhury, Bifurcations and chaos in a predatorprey model with delay and a laserdiode system with selfsustained pulsations, Chaos, Solitons & Fractals, 16 (2003), 5977. 

14 
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Boston: Academic Press, 1993. 

15 
A. Leung, Periodic solutions for a preypredator differential delay equation, J. Differential Equations, 26 (1977), 391403. 

16 
X. Liao and G. Chen, Hopf bifurcation and chaos analysis of Chen's system with idtribted delays, Chaos, Solitons & Fractals, 25 (2005), 197220. 

17 
Z. Liu and R. Yuan, Stability and bifurcation in a harvested onepredatortwoprey model with delays, Chaos, Solitons & Fractals, 27 (2006), 13951407. 

18 
B. Liu, Z. Teng and L. Chen, Analysis of a predatorprey model with Holling II functional response concerning impulsive control strategy, J. Comput. Appl. Math., 193 (2006), 347362. 

19 
X. Liu and D. Xiao, Complex dynamic behaviors of a discretetime predatorprey system, Chaos, Solitons & Fractals, 32 (2007), 8094. 

20 
W. Ma and Y. Takeuchi, Stability analysis on a predatorprey system with disributed delays, J. Comput. Appl. Math., 88 (1998), 7994. 

21 
M. A. McCarthy, The Allee effect, finding mates and theoretical models, Ecological Modelling, 103 (1997), 99102. 

22 
J. D. Murray, "Mathematical Biology,'' SpringerVerlag, New York, 1993. 

23 
S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorovtype predatorprey systems with discrete delays, Quart. Appl. Math., 59 (2001), 159173. 

24 
S. Ruan and J. Wei, Periodic solutions of planar systems with two delays, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 10171032. 

25 
I. Scheuring, Allee effect increases the dynamical stability of populations, J. Theor. Biol., 199 (1999), 407414. 

26 
C. Sun, M. Han, Y. Lin and Y. Chen, Global qualitative analysis for a predatorprey system with delay, Chaos, Solitons & Fractals, 32 (2007), 15821596. 

27 
Z. Teng and M. Rehim, Persistence in nonautonomous predatorprey systems with infinite delays, J. Comput. Appl. Math., 197 (2006), 302321. 

28 
L.L. Wang, W.T. Li and P.H. Zhao, Existence and global stability of positive periodic solutions of a discrete predatorprey system with delays, Adv. Difference Equ., 4 (2004), 321336. 

29 
F. Wang and G. Zeng, Chaos in LotkaVolterra predatorprey system with periodically impulsive ratioharvesting the prey and time delays, Chaos, Solitons & Fractals, 32 (2007), 14991512. 

30 
X. Wen and Z. Wang, The existence of periodic solutions for some models with delay, Nonlinear Anal. RWA, 3 (2002), 567581. 

31 
R. Xu and Z. Wang, Periodic solutions of a nonautonomous predatorprey system with stage structure and time delays, J. Comput. Appl. Math., 196 (2006), 7086. 

32 
X. P. Yan and Y. D. Chu, Stability and bifurcation analysis for a delayed LotkaVolterra predatorprey system, J. Comput. Appl. Math., 196 (2006), 198210. 

33 
J. Yu, K. Zhang, S. Fei and T. Li, Simplified exponential stability analysis for recurrent neural networks with discrete and distributed timevarying delays, Applied Mathematics and Computation, 205 (2008), 465474. 

34 
S. R. Zhou, Y. F. Liu and G. Wang, The stability of predatorprey systems subject to the Allee effects, Theor. Population Biol., 67 (2005), 2331. 

35 
L. Zhou and Y. Tang, Stability and Hopf bifurcation for a delay competition diffusion system, Chaos, Solitons & Fractals, 14 (2002), 12011225. 

36 
X. Zhou, Y. Wu, Y. Li and X. Yau, Stability and Hopf Bifurcation analysis on a two neuron network with discrete and distributed delays, Chaos, Solitons & Fractals, 40 (2009), 14931505. 

Go to top
