`a`
Networks and Heterogeneous Media (NHM)
 

Existence and approximation of probability measure solutions to models of collective behaviors
Pages: 561 - 596, Issue 3, September 2011

doi:10.3934/nhm.2011.6.561      Abstract        References        Full text (597.7K)           Related Articles

Andrea Tosin - Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email)
Paolo Frasca - Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email)

1 L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," 2nd edition, Birkhäuser Verlag, Basel, 2008.       
2 N. Bellomo, "Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach," Birkhäuser, Boston, 2008.       
3 J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.       
4 C. Canuto, F. Fagnani and P. Tilli, A Eulerian approach to the analysis of rendez-vous algorithms, in "Proceedings of the 17th IFAC World Congress", (2008), 9039-9044.
5 E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, J. Math. Biol., 62 (2011), 569-588.       
6 E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrian and animal groups from macroscopic and microscopic viewpoints, in "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences" (eds. G. Naldi, L. Pareschi and G. Toscani), Birkhäuser, Boston, (2010), 337-364.       
7 R. J. LeVeque, "Numerical Methods for Conservation Laws," 2nd edition, Birkhäuser Verlag, Basel, 1992.       
8 B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.       
9 B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.       

Go to top