Mathematical analysis of steadystate solutions in compartment and continuum models of cell polarization
Pages: 1135  1168,
Issue 4,
October
2011
doi:10.3934/mbe.2011.8.1135 Abstract
References
Full text (1284.5K)
Related Articles
Zhenzhen Zheng  Department of Mathematics, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvine, CA 92697, United States (email)
ChingShan Chou  Department of Mathematics, Mathematica Biosciences Institute, The Ohio State University, Columbus, OH 43221, United States (email)
TauMu Yi  Developmental and Cell Biology, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvina, CA 92697, United States (email)
Qing Nie  Department of Mathematics, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvine, California, 926973875, United States (email)
1 
G. L. Atkins, "Multicompartment Models for Biological Systems," Willmer Brothers Limited, Birkenhead, Great Britain, 1969. 

2 
D. M. Bryant and K. E. Mostov, From cells to organs: Building polarized tissue, Nature Rev. Mol. Cell Biol., 9 (2008), 887901. 

3 
C.S. Chou, Q. Nie and T. M. Yi, Modeling robustness tradeoffs in yeast cell polarization induced by spatial gradients, PLoS One, 3 (2008), e3103. 

4 
A. Dawes and L. EdelsteinKeshet, Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a 1D model of a motile cell, Biophys. J., 92 (2007), 125. 

5 
P. Devreotes and C. Janetopoulos, Eukaryotic chemotaxis: Distinctions between directional sensing and polarization, J. Biol. Chem., 278 (2003), 2044520448. 

6 
J. Dobbelaere and Y. Barral, Spatial coordination of cytokinetic events by compartmentalization of the cell cortex, Science, 305 (2004), 393396. 

7 
D. G. Drubin and W. J. Nelson, Origins of cell polarity, Cell, 84 (1996), 335344. 

8 
A. B. Goryachev and A. V. Pokhilko, Dynamics of cdc42 network embodies a turingtype mechanism of yeast cell polarity, FEBS Lett., 582 (2008), 14371443. 

9 
J. Haugh and I. Schneider, Spatial analysis of 3' phosphoinositide signaling in living fibroblasts: I. Uniform stimulation model and bounds on dimensionless groups, Biophys. J., 86 (2004), 589598. 

10 
P. A. Iglesias and A. Levchenko, Modeling the cell's guidance system, Sci STKE, 2002 (2002), re12. 

11 
A. Jilkine, A. F. M. Marée and L. EdelsteinKeshet, Mathematical model for spatial segregation of the Rhofamily GTPases based on inhibitory crosstalk, Bull. Math. Biol., 69 (2007), 19431978. 

12 
J. Krishnan and P. A. Iglesias, Uncovering directional sensing: Where are we headed?, Syst. Biol. (Stevenage), 1 (2004), 5461. 

13 
J. Krishnan and P. Iglesias, A modeling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells, J. Theor. Biol., 229 (2004), 8599. 

14 
A. Levchenko and P. A. Iglesias, Models of eukaryotic gradient sensing: Application to chemotaxis of amoebae and neutrophils, Biophys. J., 82 (2002), 5063. 

15 
I. Maly, H. Wiley and D. Lauffenburger, Selforganization of polarized cell signaling via autocrine circuits: Computational model analysis, Biophys. J., 86 (2004), 1022. 

16 
A. Marée, A. Jilkine, A. Dawes, V. Grieneisen and L. EdelsteinKeshet, Polarization and movement of keratocytes: A multiscale modeling approach, Bull. Math. Biol., 68 (2006), 11691211. 

17 
F. R. Maxfield, Plasma membrane microdomains, Curr Opin Cell Biol, 14 (2002), 483487. 

18 
H. Meinhardt, "Models of Biological Pattern Formation," Academic Press, London, 1982. 

19 
H. Meinhardt, Orientation of chemotactic cells and growth cones: Models and mechanisms, J. Cell Sci., 112 (1999), 28672874. 

20 
I. Mellman and W. J. Nelson, Coordinated protein sorting, targeting and distribution in polarized cells, Nature Rev. Mol. Cell Biol., 9 (2008), 833845. 

21 
Y. Mori, A. Jilkine and L. EdelsteinKeshet, Wavepinning and cell polarity from a bistable reactiondiffusion system, Biophys J., 94 (2008), 36843697. 

22 
A. Narang, Spontaneous polarization in eukaryotic gradient sensing: A mathematical model based on mutual inhibition of frontness and backness pathways, J. Theor. Biol., 240 (2006), 538553. 

23 
M. Onsum and C. V. Rao, A mathematical model for neutrophil gradient sensing and polarization, PLoS Comput. Biol., 3 (2007), 436450. 

24 
M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki and S. Kuroda, A mass conserved reactiondiffusion system captures properties of cell polarity, PLoS Comput. Biol., 3 (2007), 10401054. 

25 
D. Pruyne and A. Bretscher, Polarization of cell growth in yeast I. Establishment and maintenance of polarity states, J. Cell Sci., 113 (2000), 365375. 

26 
Y. Sakumura, Y. Tsukada, N. Yamamoto and S. Ishii, A molecular model for axon guidance based on cross talk between Rho GTPases, Biophys. J., 89 (2005), 812822. 

27 
R. Skupsky, W. Losert and R. Nossal, Distinguishing modes of eukaryotic gradient sensing, Biophys. J., 89 (2005), 28062823. 

28 
K. Subramanian and A. Narang, A mechanistic model for eukaryotic gradient sensing: Spontaneous and induced phosphoinositide polarization, J. Theor. Biol., 231 (2004), 4967. 

29 
D. W. Thompson, "On Growth and Form," Dover, New York, 1992. 

30 
M. Tomishige, Y. Sako and A. Kusumi, Regulation mechanism of the lateral diffusion of Band 3 in erythrocyte membranes by the membrane skeleton, J. Cell Biol., 142 (1998), 9891000. 

31 
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond. B, 237 (1952), 3772. 

32 
M. VicenteManzanares and F. SánchezMadrid, Cell polarization: A comparative cell biology and immunological view, Clin. Dev. Immunol., 7 (2000), 5165. 

Go to top
