Global solutions to the incompressible magnetohydrodynamic equations
Pages: 763  783,
Issue 2,
March
2012
doi:10.3934/cpaa.2012.11.763 Abstract
References
Full text (433.2K)
Related Articles
Xiaoli Li  Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (email)
Dehua Wang  Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States (email)
1 
H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory," Birkhúser Boston, Inc., Boston, 1995. 

2 
J. Bergh, J. Löfström, "Interpolation spaces. An introduction," Grundlehren der Mathematischen Wissenschaften, SpringerVerlag, BerlinNew York, 1976. 

3 
T. G. Cowling, "Magnetohydrodynamics," Interscience Tracts on Physics and Astronomy, New York, 1957. 

4 
R. Danchin, Densitydependent incompressible fluids in bounded domains, J. Math. Fluid Mech., 8 (2006), 333381. 

5 
B. Desjardins, Regularity of weak solutions of the compressible isentropic NavierStokes equations, Comm. Partial Differential Equations, 22 (1997), 9771008. 

6 
J. I. Díaz and M. B. Lerena, On the inviscid and nonresistive limit for the equations of incompressible magnetohydrodynamics, Mathematical Models and Methods in Applied Science, 12 (2002), 14011419. 

7 
G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241279. 

8 
J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Analysis, 69 (2008), 36373660. 

9 
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004. 

10 
H. Fujita and T. Kato, On the NavierStokes initial value problem. I., Arch. Rational Mech. Anal., 16 (1964), 269315. 

11 
G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations, Vol. I. Linearized Steady Problems," SpringerVerlag, New York, 1994. 

12 
C. Guillope, Longtime behavior of the solutions of the timedependent NavierStokes equations and property of functional invariant (or attractor) sets, C. R. Acad. Sci. Paris Sér. I Math., 294 (1982), 221224. 

13 
C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equation, 213 (2005), 235254. 

14 
C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113152. 

15 
P. Houston, D. Schötzau and X. Wei, A mixed DG method for linearized incompressible magnetohydrodynamics, J Sci. Comput., 40 (2009), 281314. 

16 
X. Hu and D. Wang, Global solutions to the threedimensional full compressible magnetohydrodynamic flows, Commun. Math. Phys., 283 (2008), 255284. 

17 
X. Hu and D. Wang, Global existence and largetime behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203238. 

18 
A. G. Kulikovskiy and G. A. Lyubimov, "Magnetohydrodynamics," AddisonWesley, Reading, Massachusetts, 1965. 

19 
L. Landau and E. Lifchitz, "Electrodynamics of Continuous Media," Theoretical physics, Vol. 8, MIR, Moscow, 1990. 

20 
P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996. 

21 
P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998. 

22 
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases, J. Math. Kyoto Univ., 20 (1980), 67104. 

23 
A. Matsumura and T. Nishida, Initialboundary value problems for the equations of motion of compressible viscous and heatconductive fluids, Comm. Math. Phys., 89 (1983), 445464. 

24 
C. Miao and B. Yuan, On the wellposedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 5376. 

25 
A. Novotný and I. Stravskraba, "Introduction to the Mathematical Theory of Compressible Flow," Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford, 2004. 

26 
P. Schmidt, On a magnetohydrodynamic problem of Euler type, J. Differential Equation, 74 (1988), 318335. 

27 
M. E. Schonbek, T. P. Schonbek and E. Süli, Largetime behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717756. 

28 
P. Secchi, On the equations of ideal incompressible magnetohydrodynamics, Rend. Sem. Ma. Univ. Padova, 90 (1993), 103119. 

29 
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635664. 

30 
C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$ spaces for bounded and exterior domains, in "Mathematical Problems Relating to the NavierStokes Equation," 135, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992. 

31 
C. Sulem, Quelques résultats de régularité pour les équations de la magnétohydrodynamique, C. R. Acad. Sci. Paris Sér. AB, 285 (1977), A365A368. 

Go to top
