`a`
Numerical Algebra, Control and Optimization (NACO)
 

Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints
Pages: 19 - 29, Issue 1, March 2012

doi:10.3934/naco.2012.2.19      Abstract        References        Full text (207.5K)           Related Articles

Chunlin Hao - Department of Applied Mathematics, Beijing University of Technology, Beijing 100124, China (email)
Xinwei Liu - Department of Applied Mathematics, Hebei University of Technology, Tianjin 300401, China (email)

1 R. Andreani, E. G. Birgin, J. M. Martinez and M. L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., 111 (2008), 5-32.       
2 N. Arora and L. T. Biegler, A trust region SQP algorithm for equality constrained parameter estimation with simple parameter bounds, Comput. Optim. Appl., 28 (2004), 51-86.       
3 J. T. Betts, Very low-thrust trajectory optimization using a direct SQP method, J. Comput. Appl. Math., 120 (2000), 27-40.       
4 J. V. Burke, A sequential quadratic programming method for potentially infeasible mathematical programs, J. Math. Anal. Appl., 139 (1989), 319-351.       
5 J. V. Burke and S. P. Han, A robust sequential quadratic programming method, Math. Program., 43 (1989), 277-303.       
6 R. H. Byrd, F. E. Curtis and J. Nocedal, An inexact SQP method for equality constrained optimization, SIAM J. Optim., 19 (2008), 351-369.       
7 R. H. Byrd, M. Marazzi and J. Nocedal, On the convergence of Newton iterations to non- \break stationary points, Math. Program., 99 (2004), 127-148.       
8 A. R. Conn, N. Gould and Ph. L. Toint, "Trust-Region Methods," SIAM, Philadelphia, USA, 2000.       
9 H. Dai, "Matrix Theory," Science Press, 2001.
10 R. Fletcher, "Practical Methods for Optimization. Vol. 2: Constrained Optimization," John Wiley and Sons, Chichester, UK, 1981.       
11 R. Fletcher, N. Gould, S. Leyffer, Ph. L. Toint and A. W├Ąchter, Global convergence of a trust-region SQP-filter allgorithm for general nonlinear programming, SIAM J. Optim., 13 (2002), 635-659.       
12 R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), 239-269.       
13 G. H. Golub and C. F. V. Loan, "Matrix Computation," Third Edition, The Johns Hopkins University Press, 1996.       
14 S. P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl., 22 (1977), 297-309.       
15 M. Heinkenschloss and L. N. Vicente, Analysis of inexact trust-region SQP algorithms, SIAM J. Optim., 12 (2002), 283-302.       
16 X. W. Liu, Global convergence on an active set SQP for inequality constrained optimization, J. Comput. Appl. Math., 180 (2005), 201-211.       
17 X. W. Liu and J. Sun, A robust primal-dual interior point algorithm for nonlinear programs, SIAM J. Optim., 14 (2004), 1163-1186.       
18 X. W. Liu and Y. X. Yuan, A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties, Math. Program., 125 (2010), 163-193.       
19 X. W. Liu and Y. X. Yuan, A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization, SIAM J. Optim., 21 (2011), 545-571.       
20 W. Murray, Sequential quadratic programming methods for large-scale problems, J. Comput. Optim. Appl., 7 (1997), 127-142.       
21 J. Nocedal and S. Wright, "Numerical Optimization," Springer-Verlag New York, Inc., 1999.       
22 M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in "Proceedings 1977 Dundee Biennial Conference on Numerical Analysis"(ed. G.A. Watson), Springer-Verlag, Berlin, 1978, 144-157.       
23 P. Spellucci, An SQP method for general nonlinear programs using only equality constrained subproblems, Math. Program., 82 (1998), 413-448.       
24 G. W. Walster and E. R. Hansen, Computing interval parameter bounds from fallible measurements using overdetermined (Tall) systems of nonlinear equations, Lecture Notes in "Computer Science, Global Optimization and Constraint Satisfaction"(eds. C. Blieket al.), COCOS 2002, LNCS 2861, 171-177, Springer Berlin Heidelberg, 2003.
25 S. J. Wright, Modifying SQP for degenerate problems, SIAM J. Optim., 13 (2002), 470-497.       
26 Y. X. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), 515-539.       

Go to top