`a`
Communications on Pure and Applied Analysis (CPAA)
 

Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model
Pages: 2371 - 2391, Issue 6, November 2012

doi:10.3934/cpaa.2012.11.2371      Abstract        References        Full text (486.7K)           Related Articles

T. Gallouët - Université de Provence, CMI, Marseille, France (email)
J.-C. Latché - Institut de Radioprotection et de Sûret, France (email)

1 P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.-L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali della Scuola Normale Superiora di Pisa, Classe de Scienze, 22 (1955), 240-273.       
2 L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.       
3 P. G. Ciarlet, "Handbook of Numerical Analysis Volume II: Finite Elements Methods, Basic Error Estimates for Elliptic Problems," Handbook of Numerical Analysis, Volume II, P. Ciarlet and J. L. Lions eds., 1991, 17-351.       
4 G. Cimatti, Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor, Annali di Matematica Pura ed Applicata, 162 (1992), 33-42.       
5 S. Clain, "Analyse mathématique et numérique d'un modèle de chauffage par induction," EPFL, 1994.
6 M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.), R-3 (1973), 33-75.       
7 R. Eymard, T . Gallouët and R. Herbin, Finite volume methods, in "Handbook of Numerical Analysis, Volume VII" (P. Ciarlet and J. L. Lions eds), North Holland, (2000), 713-1020.       
8 R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes - SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, 30 (2009), 1009-1043.       
9 T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: the isothermal case, Mathematics of Computation, 267 (2009), 1333-1352.       
10 T. Gallouët, A. Larcher and J.-C. Latché, Convergence of a finite volume scheme for the convection-diffusion equation with $L^1$ data, Mathematics of Computation, to appear.
11 A. Larcher and J.-C. Latché, Convergence analysis of a finite element - finite volume scheme for a RANS turbulence model, submitted.
12 R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Analysis, Theory, Methods & Applications, 28 (1997), 393-417.       
13 J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires," Dunod, Paris, 1969.       
14 R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numerical Methods for Partial Differential Equations, 8 (1992), 97-111.       
15 J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.       
16 R. Temam, "Navier-Stokes Equations," Studies in mathematics and its applications, North Holland, 1977.       

Go to top