Steady states in hierarchical
structured populations with distributed states at birth
Pages: 2671  2689,
Issue 8,
November
2012
doi:10.3934/dcdsb.2012.17.2671 Abstract
References
Full text (423.8K)
Related Articles
József Z. Farkas  Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom (email)
Peter Hinow  Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 532010413, United States (email)
1 
A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical sizestructured model: Wellposedness andapproximation, Appl. Math. Optim., 51 (2005), 3559. 

2 
A. S. Ackleh and K. Ito, Measurevalued solutions for a hierarchically sizestructured population, J. Differential Equations, 217 (2005), 431455. 

3 
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2^{nd} edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. 

4 
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620709. 

5 
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "OneParameter Semigroups of Positive Operators," Lecture Notes in Mathematics, 1184, SpringerVerlag, Berlin, 1986. 

6 
À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967987. 

7 
À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 16951722. 

8 
J. M. Cushing, The dynamics of hierarchical agestructured populations, J. Math. Biol., 32 (1994), 705729. 

9 
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMSNSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998. 

10 
K. Deimling, "Nonlinear Functional Analysis," SpringerVerlag, Berlin, 1985. 

11 
K.J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, SpringerVerlag, New York 2000. 

12 
J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94114. 

13 
J. Z. Farkas and T. Hagen, Stability and regularity results for asizestructured population model, J. Math. Anal. Appl., 328 (2007), 119136. 

14 
J. Z. Farkas and T. Hagen, Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 18251839. 

15 
J. Z. Farkas and T. Hagen, Hierarchical sizestructured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639657. 

16 
J. Z. Farkas and P. Hinow, On a sizestructured twophase population model with infinite statesatbirth, Positivity, 14 (2010), 501514. 

17 
A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with statedependent time evolution, Japan J. Appl. Math., 7 (1990), 433457. 

18 
M. E. Gurtin and R. C. MacCamy, Nonlinear agedependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281300. 

19 
S. M. Henson and J. M. Cushing, Hierarchical models of intraspecific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755772. 

20 
S. R.J. Jang and J. M. Cushing, A discrete hierarchical model ofintraspecific competition, J. Math. Anal. Appl., 280 (2003), 102122. 

21 
S. R.J. Jang and J. M. Cushing, Dynamics of hierarchical models in discretetime, J. Difference Equ. Appl., 11 (2005), 95115. 

22 
N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc., 347 (1995), 28512868. 

23 
J. A. J. Metz and O. Diekmann, Age dependence, in "The Dynamics of Physiologically Structured Populations" (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986. 

24 
J. Prüss, On the qualitative behavior of populations with agespecific interactions, Comput. Math. Appl., 9 (1983), 327339. 

25 
S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549591. 

26 
Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Eq., 248 (2010), 17561776. 

27 
G. F. Webb, "Theory of Nonlinear AgeDependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985. 

28 
K. Yosida, "Functional Analysis," Reprint of the sixth (1980) edition, Classics in Mathematics, SpringerVerlag, Berlin, 1995. 

Go to top
