Communications on Pure and Applied Analysis (CPAA)

Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows
Pages: 341 - 357, Issue 1, January 2013

doi:10.3934/cpaa.2013.12.341      Abstract        References        Full text (439.8K)           Related Articles

Jihong Zhao - Institute of Applied Mathematics, College of Science, Northwest A\&F University, Yangling, Shaanxi 712100, China (email)
Qiao Liu - Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (email)
Shangbin Cui - Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China (email)

1 J.-Y. Chemin, "Perfect Incompressible Fluids," Oxford Lecture Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press: New York, 1998.       
2 R. Dachin, "Fourier Analysis Methods for PDE's," 2005. Available from: http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf.
3 J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rhe., 5 (1961), 23-34.       
4 J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.
5 I. Gallagher and F. Planchon, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal., 161 (2002), 307-337.       
6 R. Hardt and D. Kinderlehrer, "Mathematical Questions of Liquid Crystal Theory," The IMA Volumes in Mathematics andits Applications 5, New York: Springer-Verlag, 1987.       
7 M. Hong, Global existence of solutions of the simplied Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15-36.       
8 X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880.       
9 P.-G. LemariĆ©-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall/CRC, 2002.       
10 F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.       
11 F. Leslie, Theory of flow phenomenum in liquid crystals, In "The Theory of Liquid Crystals," London-New York: Academic Press, 4 (1979), 1-81.
12 F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.       
13 F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.       
14 F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.       
15 F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete. Contin. Dyn. Syst., 2 (1996), 1-22.       
16 F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math., 31B (2010), 921-938.       
17 T. Runst and W. Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co.: Berlin, 1996.       
18 H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455-475.       
19 C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.       
20 H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396.       
21 H. Wu, X. Xu and C. Liu, Asymptotic behavior for a Nematic liquid crystal model with different kinematic transport properties, DOI 10.1007/s00526-011-0460-5.

Go to top