`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Uniqueness of harmonic map heat flows and liquid crystal flows
Pages: 739 - 755, Issue 2, February 2013

doi:10.3934/dcds.2013.33.739      Abstract        References        Full text (421.0K)           Related Articles

Junyu Lin - Department of Mathematics, South China University of Technology, Guangzhou, 510640, China (email)

1 Y. Chen and W. Y. Ding, Blow up and global existence for heat flows of harmonic maps, Invent. Math., 99 (1990), 567-578.       
2 K. Chang, W. Ding and R. Ye, Finite time blow-up of the heat flow of harmonic maps from surfaces, JDG, 36 (1992), 507-515.       
3 J. M. Coron and J. M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308 (1989), 339-344.       
4 Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow of harmonic maps, Math. Z., 201 (1989), 83-103.       
5 J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.       
6 J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.       
7 A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comm. Math. Helvetici., 70 (1995), 310-338.       
8 P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," New York, Oxford University Press, 1993.
9 J. Jost, Ein existenzbeiweis fiir harmonisch Abbildungen, die ein Dirichlet problem 16sen mittels der methode des warmeflusses, Manuscripta Math., 34 (1981), 17-25.       
10 H. Koch and D. Tataru, Well-posedness for theNavier-Stokes equations, Adv. Math., 157 (2001), 22-35.       
11 F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.       
12 J. Y. Lin and S. J. Ding, On the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces, Math. Meth. Appl. Sciences, DOI: 10.1002/mma.1548.
13 F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.       
14 F. Lin and C. Liu, Partial regularities of nonlinear disspative systems modeling the flow of liquid crystals, DCDS, 2 (1996), 1-23.       
15 F. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Aanl., 154 (2000), 135-156.       
16 F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.       
17 F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Annals of Mathematics, 31 (2010), 921-938.       
18 H. Miura, Remark on uniqueness of mild solutions to the Navier-Stokes equations, J. Funt. Anal., 218 (2005), 110-129.       
19 M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom., 28 (1988), 485-502.       
20 A. Soyeur, A global existence result for the heat flow of harmonic maps, Comm. PDE, 15 (1990), 237-244.       
21 M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comment. Math. Helv, 60 (1985), 558-581.       
22 C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.       
23 X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, JDE, 252 (2012), 1169-1181.       

Go to top