Communications on Pure and Applied Analysis (CPAA)

Existence of positive steady states for a predator-prey model with diffusion
Pages: 2189 - 2201, Issue 5, September 2013

doi:10.3934/cpaa.2013.12.2189      Abstract        References        Full text (371.6K)           Related Articles

Wenshu Zhou - Department of Mathematics, Dalian Nationalities University, Dalian 116600, China (email)
Hongxing Zhao - College of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, China (email)
Xiaodan Wei - School of Computer Science, Dalian Nationalities University, Dalian 116600, China (email)
Guokai Xu - College of Electromechanical and Information Engineering, Dalian Nationalities University, Dalian 116600, China (email)

1 R. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 247-272.       
2 E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal, 34 (2002), 292-314.       
3 Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.       
4 Y. H. Du and S. J. Li, Positive solutions with prescribed patterns in some simple semilinear equations, Differential Integral Equations, 15 (2002), 805-822.       
5 Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc, 349 (1997), 2443-2475.       
6 Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.       
7 Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Tran. Amer. Math. Soc, 359 (2007), 4557-4593.       
8 J. M. Fraile, P. K. Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.       
9 R. T. Gong and S. B. Hsu, Stability analysis for a class of diffusive coupled system with application to population biology, Can. Appl. Math. Quart, 8 (2000), 79-96.       
10 K. Hasík, On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59-74.       
11 S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwannese J. Mathematics, 9 (2005), 151-173.       
12 W. Ko, K. Ryu, A qualitative study on general Gause type predator-prey models with constant diffusion rates, J. Math. Anal. Appl., 344 (2008), 217-230.       
13 W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey models with non-monotonic functional response, Nonlinear Anal. RWA, 10 (2009), 2558-2573.       
14 Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990), 463-474.       
15 C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.       
16 Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.       
17 Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.       
18 J. D. Murray, "Mathematical Biology," Springer-Verlag, Berlin, 1989.       
19 T. C. Ouyang, On the positive solutions of semilinear equations $\Delta u + \lambda u-hu^p = 0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503-527.       
20 Peter Y. H. Pang and M. X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London. Math. Soc., 88 (2004), 135-157.       
21 J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, New York, 1994.       
22 M. X. Wang, Peter Y. H. Pang and W. Y. Chen, Sharp spatial pattern of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA Journal of Applied Mathematics, 73 (2008), 815-835.       

Go to top