`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

A nonlinear diffusion problem arising in population genetics
Pages: 821 - 841, Issue 2, February 2014

doi:10.3934/dcds.2014.34.821      Abstract        References        Full text (310.2K)           Related Articles

Peng Zhou - Department of Mathematics, MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China (email)
Jiang Yu - Department of Mathematics, MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China (email)
Dongmei Xiao - Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China (email)

1 D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propogation, in "Partial Differential Equations and Related Topics" (Program, Tulane Univ., New Orleans, La., 1974), Lecture Notes in Math., 446, Springer, Berlin, (1975), 5-49.       
2 M. BĂ´cher, The smallest characteristic numbers in a certain exception case, Bull. Amer. Math. Soc., 21 (1914), 6-9.       
3 K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.       
4 C. Conley, An application of Wazewski's method to a non-linear boundary value problem which arises in population genetics, J. Math. Biol., 2 (1975), 241-249.       
5 M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.       
6 M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180.       
7 P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal., 64 (1977), 93-109.       
8 P. C. Fife and L. A. Peletier, Clines induced by variable selection and migration, Proc. R. Soc. Lond. B., 214 (1981), 99-123.
9 R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics., 7 (1937), 355-369.
10 W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol., 2 (1975), 219-233.       
11 D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.       
12 J. B. S. Haldane, The theory of a cline, J. Genet., 48 (1948), 277-284.
13 D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.       
14 P. Hess, "Periodic-parabolic Boundary Value Problems and Positivity," Pitman Research Notes in Mathematics Series, 247, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.       
15 Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population genetics, J. Differential Equations., 181 (2002), 388-418.       
16 Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations., 204 (2004), 292-322.       
17 Y. Lou, W.-M. Ni and L. L. Su, An indefinite nonlinear diffusion problem in population genetics. II. Stability and Multiplicity, Disc. Cont. Dyna. Syst., 27 (2010), 643-655.       
18 H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.       
19 T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615.
20 T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Bioscience. IV'' (ed. A. Friedman), Lecture Notes in Math., 1922, Springer, Berlin, (2008), 117-170.       
21 K. Nakashima, W.-M. Ni and L. L. Su, An indefinite nonlinear diffusion problem in population genetics. I. Existence and Limiting Profiles, Disc. Cont. Dyna. Syst., 27 (2010), 617-641.       
22 W.-M. Ni, "The Mathematics of Diffusion," CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philedelphia, PA, 2011.       
23 W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.       
24 D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 979-1000.       
25 S. Senn, On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an applicatiion to population genetics, Comm. Partial Differential Equations, 8 (1983), 1199-1228.       
26 S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1981/82), 459-470.       
27 M. Slatkin, Gene flow and selection in a cline, Genetics, 75 (1973), 733-756.       

Go to top