`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

On a comparison method to reaction-diffusion systems and its applications to chemotaxis
Pages: 2669 - 2688, Issue 10, December 2013

doi:10.3934/dcdsb.2013.18.2669      Abstract        References        Full text (421.7K)           Related Articles

Mihaela Negreanu - Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain (email)
J. Ignacio Tello - Departamento de Matemática Aplicada, ETSI SI, Universidad Politécnica de Madrid, 28031 Madrid, Spain (email)

1 S. Ahmad, Convergence and ultimate bound of solutions of the nonautonomous Volterra-Lotka Competition Equations, J. Math. Anal. and Appl., 127 (1987), 377-387.       
2 S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. American Math. Society, 117 (1993), 199-204.       
3 S. Ahmad, Extintion of species in nonautonomous Volterra-Lotka systems, Proc. American Math. Society, 127 (1999), 2905-2910.       
4 S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Analysis, 13 (1998), 263-284.       
5 M. Braun, Differential Equations and Their Applications, An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993.       
6 A. Derlet and P. Takáč, A quasilinear parabolic model for population evolution, Differential equations and Applications, 4 (2012), 121-136.       
7 A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.       
8 M. Negreanu and J. I. Tello, On a Parabolic-Elliptic chemotactic system with non-constant chemotactic sensitivity, Nonlinear Analysis: Theory, Methods & Applications, 80 (2013), 1-13.       
9 M. Negreanu and J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1086-1103.       
10 C. V. Pao, Comparison methods and stability analysis of reaction-diffusion systems, In the book Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, pp 277-292. Dekker, New York, 1994.       
11 P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2007.       
12 P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301-1334.       
13 P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Diff. Equat., 153 (1999), 374-406.       
14 C. Stinner, J. I. Tello and M. Winkler, Competitive exclusion in a two species chemotaxis model, J. Math. Biology, (2013).
15 J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.       
16 J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.       
17 S. Zheng and H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, Applied Mathematics and Computation, 180 (2006), 295-308.       

Go to top