Analyzing the infection dynamics and control strategies of cholera
Pages: 747 - 757, Issue special, November 2013

doi:10.3934/proc.2013.2013.747      Abstract        References        Full text (619.2K)                  Related Articles

Jianjun Paul Tian - Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States (email)
Shu Liao - School of Mathematics and Statistics, Chongqing Technology and Business University, China (email)
Jin Wang - Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States (email)

1 R.M. Anderson and R.M. May, Infectious diseases of humans, Oxford University Press, 1991.
2 G. J. Butler and P. Waltman, Persistence in dynamical systems, Journal of Differential Equations 63: 255-263, 1986.       
3 C.T. Code├žo, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infectious Diseases, 1:1, 2001.
4 D.M. Hartley, J.G. Morris and D.L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Medicine, 3: 0063-0069, 2006.
5 P. Hartman, Ordinary differential equations, John Wiley, New York, 1980.       
6 A.A. King, E.L. Lonides, M. Pascual and M.J. Bouma, Inapparent infections and cholera dynamics, Nature, 454: 877-881, 2008.
7 G.A. Korn and T.M. Korn, Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for references and review, Dover Publications, Mineola, NY, 2000.
8 M.M. Levine, D.R. Nalin, M.B. Rennels, et al., Genetic susceptibility to cholera, Annals of Human Biology, 6: 369-374, 1979.
9 M.Y. Li, J.R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160: 191-213, 1999.       
10 M.Y. Li and J.S. Muldowney, Global stability for the SEIR model in epidemiology, Mathematical Biosciences, 125: 155-164, 1995.       
11 Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith and J.G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences, 108: 8767-8772, 2011.
12 J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain Journal of Mathematics, 20: 857-872, 1990.       
13 M.A. Savageau, Michaelis-Menten mechanism reconsidered: implications of fractal kinetics, Journal of Theoretical Biology, 176: 115-124, 1995.
14 H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, 1995.       
15 H.L. Smith and H.R. Zhu, Stable periodic orbits for a class of three dimensional competitive systems, Journal of Differential Equations, 110: 143-156, 1994.       
16 J.P. Tian and J. Wang, Global stability for cholera epidemic models, Mathematical Biosciences, 232: 31-41, 2011.       
17 J.H. Tien and D.J.D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bulletin of Mathematical Biology, 72: 1502-1533, 2010.       
18 J. Wang and S. Liao, A generalized cholera model and epidemic-endemic analysis, Journal of Biological Dynamics, 6: 568-589, 2012.       
19 J. Zhang and Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Mathematical Biosciences, 185: 15-32, 2003.       

Go to top