`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Dirichlet series for dynamical systems of first-order ordinary differential equations
Pages: 281 - 298, Issue 1, January 2014

doi:10.3934/dcdsb.2014.19.281      Abstract        References        Full text (496.1K)           Related Articles

Bin Wang - School of Mathematics & Physics, Qingdao University of Science & Technology, Qingdao 266061, China (email)
Arieh Iserles - Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, United Kingdom (email)

1 J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd ed., John Wiley and Sons, Ltd 2008.       
2 Y. Fang, Y. Song and X. Wu, New embedded pairs of explicit Runge-Kutta methods with FSAL properties adapted to the numerical integration of oscillatory problems, Phys. Lett. A, 372 (2008), 6551-6559.       
3 A. B. González, P. Martín and J. M. Farto, A new family of Runge-Kutta type methods for the numerical integration of perturbed oscillators, Numer. Math., 82 (1999), 635-646.       
4 E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12 (2003), 399-450.       
5 E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin, 1993.       
6 G. H. Hardy and M. Riesz, The general theory of Dirichlet series, Cambridge Tracts in Mathematics and Mathematical Physics, 18 Stechert-Hafner, Inc., New York (1964).       
7 M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilineal parabolic problems, SIAM J. Numer. Anal., 43 (2005), 1069-1090.       
8 A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd ed., Cambridge University Press, Cambridge, 2008.       
9 A. Iserles, G. P. Ramaswami and M. Sofroniou, Runge-Kutta methods for quadratic ordinary differential equations, BIT, 38 (1998), 315-346.       
10 A. Iserles and G. Söderlind, Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), 97-112.       
11 A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods, J. Comp. Appl. Maths., 125 (2000), 69-81.       
12 S. Mandelbrojt, Dirichlet Series: Principles and Methods, D. Reidel Publishing Company, Dordrecht, Holland, 1972.       
13 L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Springer-Verlag, New York, 2001.       
14 R. C. Robinson, An Introduction to Dynamical Systems: Countinuous and Discrete, Pearson Prentice Hall, New Jersey, 2004.       
15 J. M. Sanz-Serna, Runge-Kutta schems for Hamiltonian systems, BIT, 28 (1988), 877-883.       
16 F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1990.       

Go to top