Motion of discrete interfaces in lowcontrast periodic media
Pages: 169  189,
Issue 1,
March
2014
doi:10.3934/nhm.2014.9.169 Abstract
References
Full text (434.4K)
Related Articles
Giovanni Scilla  Dipartimento di Matematica 'G. Castelnuovo', 'Sapienza' UniversitÃ di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy (email)
1 
F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom., 42 (1995), 122. 

2 
F. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387438. 

3 
A. Braides, Approximation of FreeDiscontinuity Problems, Lecture notes in Mathematics, 1694, SpringerVerlag, Berlin, 1998. 

4 
A. Braides, Local Minimization, Variational Evolution and $\Gamma$Convergence, Lecture Notes in Mathematics, 2094, Springer Verlag, Berlin, 2014. 

5 
A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469498. 

6 
A. Braides and G. Scilla, Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451476. 

7 
C. Conca, J. San MartÃn, L. Smaranda and M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, J. Math. Phys., 49 (2008), 053514, 23 pp. 

8 
G. W. Milton, The Theory of Composites, Cambridge University Press, 2002. 

9 
J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential Geometry, Proceedings of Symposia in Pure Math., 51 (1993), 417438. 

Go to top
