`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems
Pages: 4735 - 4749, Issue 11, November 2014

doi:10.3934/dcds.2014.34.4735      Abstract        References        Full text (429.1K)           Related Articles

Cunming Liu - School of Mathematics, Taiyuan University of Technology, Shanxi, 030024, China (email)
Jianli Liu - Department of Mathematics, Shanghai University, Shanghai 200444, China (email)

1 B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string, Commun. Math. Phys., 84 (1982), 471-481.       
2 G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations, 246 (2009), 291-319.       
3 R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag, New York-Heidelberg, 1976.       
4 W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chinese Annals of Mathematics, 27B (2006), 263-286.
5 W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields, J.Differential Equations, 235 (2007), 127-165.       
6 D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$, Commun. Math. Phys., 269 (2007), 153-174.       
7 D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Differemtial Equations, 28 (2003), 1203-1220.       
8 D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$, Journal Math. Phy, 47 (2006), 013503,16pp.       
9 P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$, Comm. Pure Appl. Math., 10 (1957), 537-566.       
10 T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson/ John Wiley, Paris, 1994.       
11 T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, 1985.       
12 T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19 (1994), 1263-1317.       
13 T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, 28 (1997), 1299-1332.       
14 C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems, J. Math. Pures Appl., 100 (2013), 34-68.       
15 J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 30 (2007), 479-500.       
16 J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys., 49 (2008), 043507, 26pp.       
17 J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst., 23 (2009), 381-397.       
18 A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984.       
19 Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations, Journal of Mathematical Physics, 52 (2011), 053702, 23pp.       
20 B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translated mathematical monographs 55, American Math. Soc., Providence, RI, 1981.
21 Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis, 73 (2010), 600-613.       
22 Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.Ann.Math., 25 (2004), 37-56.       

Go to top